个人随笔
目录
RSA 非对称加密原理
2020-04-06 23:33:06

世界上最重要的加密算法是啥算法?我觉得是公钥加密算法,也就是非对称加密算法,该算法完美的保证了数据传输的安全性,那么它的加密步骤是怎样的呢,如下:

RSA 加密原理

步骤 说明 描述 备注
1 找出质数 P 、Q 质数也是素数,是除了1和它本身不在有别的因数
2 计算公共模数 N = P * Q -
3 欧拉函数 φ(N) = (P-1)(Q-1) -
4 计算公钥E 1 < E < φ(N) E的取值必须是整数E 和 φ(N) 必须是互质数
5 计算私钥D E * D = 1 (mod φ(N) ) E*D 对 φ(N)取余
6 加密 C = M ^E ( mod N) C:密文 M:明文
7 解密 M =C^ D (mod N) C:密文 M:明文

公钥=(E , N)
私钥=(D, N)

对外,我们只暴露公钥。

第四步骤的互质数是啥?

互质关系,如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。

关于互质关系,不难得到以下结论:

  1. 任意两个质数构成互质关系,比如13和61。

  2. 一个数是质数,另一个数只要不是前者的倍数,两者就构成互质关系,比如3和10。

  3. 如果两个数之中,较大的那个数是质数,则两者构成互质关系,比如97和57。

  4. 1和任意一个自然数是都是互质关系,比如1和99。

  5. p是大于1的整数,则p和p-1构成互质关系,比如57和56。

  6. p是大于1的奇数,则p和p-2构成互质关系,比如17和15。


举个例子

第一步,随机选择两个不相等的质数p和q。

爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

第二步,计算p和q的乘积n。

爱丽丝就把61和53相乘。

  1. n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

第三步,计算n的欧拉函数φ(n)。

根据公式:

  1. φ(n) = (p-1)(q-1)

爱丽丝算出φ(3233)等于60×52,即3120。

第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。

爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

第五步,计算e对于φ(n)的模反元素d。

所谓”模反元素”就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

  1. ed 1 (mod φ(n))

这个式子等价于

  1. ed - 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。

  1. ex + φ(n)y = 1

已知 e=17, φ(n)=3120,

  1. 17x + 3120y = 1

这个方程可以用”扩展欧几里得算法”求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

第六步,将n和e封装成公钥,n和d封装成私钥。

在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。


RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

  p
  q
  n
  φ(n)
  e
  d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:

“对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

  假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。  假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。”

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。

  12301866845301177551304949
  58384962720772853569595334
  79219732245215172640050726
  36575187452021997864693899
  56474942774063845925192557
  32630345373154826850791702
  61221429134616704292143116
  02221240479274737794080665
  351419597459856902143413

它等于这样两个质数的乘积:

  33478071698956898786044169
  84821269081770479498371376
  85689124313889828837938780
  02287614711652531743087737
  814467999489
    ×
  36746043666799590428244633
  79962795263227915816434308
  76426760322838157396665112
  79233373417143396810270092
  798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

话说1024好像也可以被破解了,但是目测需要的算力超级大,不过为了以防万一,可以用2048


加密解密例子

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓”加密”,就是算出下式的c:

  1. m^e c (mod n)

爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:

  1. 65^17 2790 (mod 3233)

于是,c等于2790,鲍勃就把2790发给了爱丽丝。

(2)解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

  1. c^d m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

  1. 2790^2753 65 (mod 3233)

因此,爱丽丝知道了鲍勃加密前的原文就是65。

至此,”加密—解密”的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种”对称性加密算法“(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。


私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

  1. c^d m (mod n)

因为,根据加密规则

  1. m^e c (mod n)

于是,c可以写成下面的形式:

  c = m^e - kn

将c代入要我们要证明的那个解密规则:

  1. (m^e - kn)^d m (mod n)

它等同于求证

  1. m^ed m (mod n)

由于

  1. ed 1 (mod φ(n))

所以

  1. ed = hφ(n)+1

将ed代入:

  1. m^(hφ(n)+1) m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,此时

  1. m^φ(n) 1 (mod n)

得到

  1. (m^φ(n))^h × m m (mod n)

原式得到证明。

(2)m与n不是互质关系。

此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:

  1. (kp)^(q-1) 1 (mod q)

进一步得到

  1. [(kp)^(q-1)]^(h(p-1)) × kp kp (mod q)

  1. (kp)^ed kp (mod q)

将它改写成下面的等式

  1. (kp)^ed = tq + kp

这时t必然能被p整除,即 t=t’p

  1. (kp)^ed = t'pq + kp

因为 m=kp,n=pq,所以

  1. m^ed m (mod n)

原式得到证明。


RSA算法原理一:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html
RSA算法原理二:http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

 446

啊!这个可能是世界上最丑的留言输入框功能~


当然,也是最丑的留言列表

有疑问发邮件到 : suibibk@qq.com 侵权立删
Copyright : 个人随笔   备案号 : 粤ICP备18099399号